GAURAV TADKAPALLY

Los Angeles, CA | (213) 913-7899 | gaurav.tadkapally@usc.edu | linkedin.com/in/gauravreddv08 | gauravreddv08.github.io

EDUCATION

University of Southern California

California, United States

Master of Science in Computer Science: 3.7/4.0

June 2023 - December 2024

Served as a Teaching Assistant (TA) for the graduate course Applied Machine Learning for Natural Language Processing (ITP 459)

Vellore Institute of Technology

Bachelor of Technology in Computer Science and Engineering: 8.94/10

Andhra Pradesh, India

May 2019 - May 2023

EXPERIENCE

Pitney Bowes

Connecticut, United States

Data Science Intern

June 2024-August 2024

- Designed agentic code assistant for software testing, leveraging Speculative Decoding to accelerate inference speed by 3x and Abstract Syntax Tree (AST) based retrieval (tree-sitters) for document indexing (<u>Demo</u>)
- Leveraged Direct Preference Optimization (DPO) and 4-bit QLoRA quantization to finetune codellama & gpt4o, improving model's generative accuracy by 15% (tested via Mutational Testing)
- Implemented retrieval methodologies (BM25-FTS, Contextual Embedding, and Reranking algorithms) to enhance efficiency and accuracy in retrieving relevant codebase context
- Integrated JaCoCo and Mutational Testing (PIT) to automatically evaluate code coverage & test effectiveness of generated unit tests

MUKHAM Machine Learning Engineer Intern

Andhra Pradesh, India

October 2022-May 2023

- Optimized facial recognition model for edge deployment (mobile application), leveraging knowledge distillation, Post-training Quantization (8-bit quantization) and Automatic Mixed Precision, decreasing model size by 75%
- Designed a Presentation Attack Detection system (facial spoof detection) utilizing the Lucas Kanade algorithm for motion analysis, achieving a 80% success rate in identifying spoofed faces

MUKHAM Pvt Ltd Andhra Pradesh, India

October 2022 - May 2023

- Developed a UAV-based wildfire detection algorithm utilizing the EfficientNetB0 architecture, incorporating Neural Architecture Search (NAS) for model optimization, resulting in a 98% precision rate
- Engineered smart glasses with a Object Detection model (Incremental Learning) for visually impaired, leading 78% accuracy

SKILLS AND CERTIFICATIONS

Languages: Python, TypeScript, JavaScript

ML Stack: PyTorch, Tensorflow, HuggingFace, LangChain, Keras, OpenCV, Scikit-learn, Pandas, NumPy

Tools & Technologies: AWS (Cloud Practitioner), Azure (AI Fundamentals), MySQL, MongoDB, Selenium, Redis

ACADEMIC PROJECTS

Research Assistant

AK15: Agentic Kubernetes Middleware (Github)

- Devised an LLM-based middleware that automates Kubernetes cluster read queries, achieving a 93% reduction in contextual token usage through agentic function calling and context retrieval
- Implemented 15 specialized API functions enabling the LLM to perform human-like, context-aware interactions with Kubernetes, optimizing and reducing API costs by leveraging targeted data retrieval strategies

GlancyAI: Consumer Product Research Assistant (Github)

- Developed an AI agent using GPT-4 and Agentic Retrieval Augmented Generation (RAG), with a vector database for optimized query retrieval, automating the extraction of data from YouTube
- Integrated summarization module condenses extensive online information into concise insights, streamlining the product recommendation process and significantly reducing user research time

Original Vision Transformer Implementation from Scratch (Github)

 Implemented ViT components including MultiHeadAttention, Image Patch Embedding, and MLP layers, achieving a one-to-one parameter match (86 million) with the original proposed model

PUBLICATIONS

- Sethuraman, S. C., Reddy Tadkapally, G. et al. Simplymime: A dynamic gesture recognition and authentication system for smart remote control. IEEE Sensors Journal (2024). https://doi.org/10.1109/JSEN.2024.3487070
- Sethuraman, Sibi C., Gaurav Reddy Tadkapally, et al. iDrone: IoT-Enabled Unmanned Aerial Vehicles for Detecting Wildfires Using Convolutional Neural Networks. Springer Nature Computer Science (2022). https://doi.org/10.1007/s42979-022-01160-7